雖然大部分人對(duì)于MEMS(Microelectromechanical systems, 微機(jī)電系統(tǒng)/微機(jī)械/微系統(tǒng))還是感到很陌生,但是其實(shí)MEMS在我們生產(chǎn),甚至生活中早已無處不在了,智能手機(jī),健身手環(huán)、打印機(jī)、汽車、無人機(jī)以及VR/AR頭戴式設(shè)備,部分早期和幾乎所有近期電子產(chǎn)品都應(yīng)用了MEMS器件。
MEMS是一門綜合學(xué)科,學(xué)科交叉現(xiàn)象及其明顯,主要涉及微加工技術(shù),機(jī)械學(xué)/固體聲波理論,熱流理論,電子學(xué),生物學(xué)等等。MEMS器件的特征長度從1毫米到1微米,相比之下頭發(fā)的直徑大約是50微米。MEMS傳感器主要優(yōu)點(diǎn)是體積小、重量輕、功耗低、可靠性高、靈敏度高、易于集成等,是微型傳感器的主力軍,正在逐漸取代傳統(tǒng)機(jī)械傳感器,在各個(gè)領(lǐng)域幾乎都有研究,不論是消費(fèi)電子產(chǎn)品、汽車工業(yè)、甚至航空航天、機(jī)械、化工及醫(yī)藥等各領(lǐng)域。常見產(chǎn)品有壓力傳感器,加速度計(jì),陀螺,靜電致動(dòng)光投影顯示器,DNA擴(kuò)增微系統(tǒng),催化傳感器。
MEMS的快速發(fā)展是基于MEMS之前已經(jīng)相當(dāng)成熟的微電子技術(shù)、集成電路技術(shù)及其加工工藝。 MEMS往往會(huì)采用常見的機(jī)械零件和工具所對(duì)應(yīng)微觀模擬元件,例如它們可能包含通道、孔、懸臂、膜、腔以及其它結(jié)構(gòu)。然而,MEMS器件加工技術(shù)并非機(jī)械式。相反,它們采用類似于集成電路批處理式的微制造技術(shù)。批量制造能顯著降低大規(guī)模生產(chǎn)的成本。若單個(gè)MEMS傳感器芯片面積為5 mm x 5 mm,則一個(gè)8英寸(直徑20厘米)硅片(wafer)可切割出約1000個(gè)MEMS傳感器芯片(圖1),分?jǐn)偟矫總€(gè)芯片的成本則可大幅度降低。因此MEMS商業(yè)化的工程除了提高產(chǎn)品本身性能、可靠性外,還有很多工作集中于擴(kuò)大加工硅片半徑(切割出更多芯片),減少工藝步驟總數(shù),以及盡可能地縮傳感器大小。
圖1. 8英寸硅片上的MEMS芯片(5mm X 5mm)示意圖
圖2. 硅片,其上的重復(fù)單元可稱為芯片(chip 或die)
MEMS需要專門的電子電路IC進(jìn)行采樣或驅(qū)動(dòng),一般分別制造好MEMS和IC粘在同一個(gè)封裝內(nèi)可以簡化工藝,如圖3。不過具有集成可能性是MEMS技術(shù)的另一個(gè)優(yōu)點(diǎn)。正如之前提到的,MEMS和ASIC (專用集成電路)采用相似的工藝,因此具有極大地潛力將二者集成,MEMS結(jié)構(gòu)可以更容易地與微電子集成。然而,集成二者難度還是非常大,主要考慮因素是如何在制造MEMS保證IC部分的完整性。例如,部分MEMS器件需要高溫工藝,而高溫工藝將會(huì)破壞IC的電學(xué)特性,甚至熔化集成電路中低熔點(diǎn)材料。MEMS常用的壓電材料氮化鋁由于其低溫沉積技術(shù),因?yàn)槌蔀橐环N廣泛使用post-CMOS compatible(后CMOS兼容)材料。雖然難度很大,但正在逐步實(shí)現(xiàn)。與此同時(shí),許多制造商已經(jīng)采用了混合方法來創(chuàng)造成功商用并具備成本效益的MEMS 產(chǎn)品。一個(gè)成功的例子是ADXL203,圖4。ADXL203是完整的高精度、低功耗、單軸/雙軸加速度計(jì),提供經(jīng)過信號(hào)調(diào)理的電壓輸出,所有功能均集成于一個(gè)單芯片IC中。這些器件的滿量程加速度測量范圍為±1.7 g,既可以測量動(dòng)態(tài)加速度(例如振動(dòng)),也可以測量靜態(tài)加速度(例如重力)。(ADXL203 精密±1.7g 雙軸iMEMS? 加速度計(jì)數(shù)據(jù)手冊及應(yīng)用電路,http://www.analog.com/media/en/technical-documentation/data-sheets/ADXL103_203.pdf)
圖3. MEMS與IC在不同的硅片上制造好了再粘合在同一個(gè)封裝內(nèi)(Andreas C. Fischer ; Fredrik Forsberg ; Martin Lapisa ; Simon J. Bleiker ; G?ran Stemme ; Niclas Roxhed ; Frank Niklaus,Integrating MEMS andICs,Microsystems & Nanoengineering, 2015, Vol.1. Integrating MEMS and ICs : Microsystems & Nanoengineering)
圖4. ADXL203(單片集成了MEMS與IC)
NEMS(納機(jī)電系統(tǒng))
NEMS(Nanoelectromechanical systems, 納機(jī)電系統(tǒng))與MEMS類似,主要區(qū)別在于NEMS尺度/重量更小,諧振頻率高,可以達(dá)到極高測量精度(小尺寸效應(yīng)),比MEMS更高的表面體積比可以提高表面?zhèn)鞲衅鞯拿舾谐潭?,(表面效?yīng)),且具有利用量子效應(yīng)探索新型測量手段的潛力。
首個(gè)NEMS器件由IBM在2000年展示, 如圖5所示。 器件為一個(gè) 32X32的二維懸臂梁(2D cantilever array)。該器件采用表面微加工技術(shù)加工而成(MEMS中采用應(yīng)用較多的有體加工技術(shù),當(dāng)然MEMS也采用了不少表面微加工技術(shù),關(guān)于微加工技術(shù)將會(huì)在之后的專題進(jìn)行介紹)。該器件設(shè)計(jì)用來進(jìn)行超高密度,快速數(shù)據(jù)存儲(chǔ),基于熱機(jī)械讀寫技術(shù)(thermomechanical writing and readout),高聚物薄膜作為存儲(chǔ)介質(zhì)。該數(shù)據(jù)存儲(chǔ)技術(shù)來源于AFM(原子力顯微鏡)技術(shù),相比磁存儲(chǔ)技術(shù),基于AFM的存儲(chǔ)技術(shù)具有更大潛力。
快速熱機(jī)械寫入技術(shù)(Fast thermomechanical writing)基于以下概念(圖6),‘寫入’時(shí)通過加熱的針尖局部軟化/融化polymer,同時(shí)施加微小壓力,形成納米級(jí)別的刻痕,用來代表一個(gè)bit。加熱時(shí)通過一個(gè)位于針尖下方的阻性平臺(tái)實(shí)現(xiàn)。對(duì)于‘讀’,施加一個(gè)固定小電流,溫度將會(huì)被加熱平臺(tái)和存儲(chǔ)介質(zhì)的距離調(diào)制,然后通過溫度變化讀取bit。 而溫度變化可通過熱阻效應(yīng)(溫度變化導(dǎo)致材料電阻變化)或者壓阻效應(yīng)(材料收到壓力導(dǎo)致形變,從而導(dǎo)致導(dǎo)致材料電阻變化)讀取。
圖5. IBM 二維懸臂梁NEMS掃描電鏡圖(SEM)其針尖小于20nm
圖6.快速熱機(jī)械寫入技術(shù)示意圖
通信/移動(dòng)設(shè)備
圖7. 智能手機(jī)簡化示意圖(How MEMS Enable Smartphone Features,http://smartphoneworld.me/mobile-commerce-2-0-where-payments-location-and-advertising-converge)
在智能手機(jī)中,iPhone 5采用了4個(gè) MEMS傳感器,三星Galaxy S4手機(jī)采用了八個(gè)MEMS傳感器。iPhone 6 Plus使用了六軸陀螺儀&加速度計(jì)(InvenSense MPU-6700)、三軸電子羅盤(AKM AK8963C)、三軸加速度計(jì)(Bosch Sensortec BMA280),磁力計(jì),大氣壓力計(jì)(Bosch Sensortec BM[280)、指紋傳感器(Authen Tec的TMDR92)、距離傳感器,環(huán)境光傳感器(來自AMS的TSL2581 )和MEMS麥克風(fēng)。iphone 6s與之類似,稍微多一些MEMS器件,例如采用了4個(gè)MEMS麥克風(fēng)。預(yù)計(jì)將來高端智能手機(jī)將采用數(shù)十個(gè)MEMS器件以實(shí)現(xiàn)多模通信、智能識(shí)別、導(dǎo)航/定位等功能。 MEMS硬件也將成為LTE技術(shù)亮點(diǎn)部分,將利用MEMS天線開關(guān)和數(shù)字調(diào)諧電容器實(shí)現(xiàn)多頻帶技術(shù)。
以智能手機(jī)為主的移動(dòng)設(shè)備中,應(yīng)用了大量傳感器以增加其智能性,提高用戶體驗(yàn)。這些傳感器并非手機(jī)等移動(dòng)/通信設(shè)備獨(dú)有,在本文以及后續(xù)文章其他地方所介紹的加速度、化學(xué)、人體感官傳感器等可以了解相關(guān)信息,在此不贅敘。此處主要介紹通信中較為特別的MEMS器件,主要為與射頻相關(guān)MEMS器件。
通信系統(tǒng)中,大量不同頻率的頻帶被使用以完成通訊功能,而這些頻帶的使用離不開頻率的產(chǎn)生。聲表面波器件,作為一種片外(off-chip)器件,與IC集成難度較大。表面聲波(SAW)濾波器曾是手機(jī)天線雙工器的中流砥柱。2005年,安捷倫科技推出基于MEMS體聲波(BAW)諧振器的頻率器件(濾波器),該技術(shù)能夠節(jié)省四分之三的空間。BAW器件不同于其他MEMS的地方在于BAW沒有運(yùn)動(dòng)部件,主要通過體積膨脹與收縮實(shí)現(xiàn)其功能。(另外一個(gè)非位移試MEMS典型例子是依靠材料屬性變化的MEMS器件,例如基于相變材料的開關(guān),加入不同電壓可以使材料發(fā)生相變,分別為低阻和高阻狀態(tài),詳見后續(xù)開關(guān)專題)。
在此值得一提的事,安華高Avago(前安捷倫半導(dǎo)體事業(yè)部)賣的如火如荼的薄膜腔聲諧振器(FBAR)。也是前段時(shí)間天津大學(xué)在美國被抓的zhang hao研究的東西。得益于AlN氮化鋁壓電材料的沉積技術(shù)的巨大進(jìn)步,AlN FBAR已經(jīng)被運(yùn)用在iphone上作為重要濾波器組件。下圖為FBAR和為SMR (Solidly Mounted Resonator)。
圖8. FBAR示意圖,壓電薄膜懸空在腔體至上
圖9. SMR示意圖(非懸空結(jié)構(gòu),采用Bragg reflector布拉格反射層) (SAW/FBAR設(shè)備的工作原理及使用范例)